Drivers Houdinisoft Port Devices



The WaveRT port driver thus accommodates the needs of the direct memory access (DMA) controllers that some audio devices have. To distinguish itself from other wave-render and wave-capture devices, the WaveRT port driver registers itself under KSCATEGORYREALTIME in addition to KSCATEGORYAUDIO, KSCATEGORYRENDER and KSCATEGORYCAPTURE. Open the Device Manager by right clicking “My computer” and selecting control panel. Look under Ports (COM & LPT). You should see an open port named 'USB Serial Port' Right click on the 'USB Serial Port' and choose the 'Update Driver Software' option. Google mobile phones price. Next, choose the 'Browse my computer for Driver software' option.

  1. Drivers Houdinisoft Port Devices Replicator
  2. Drivers Houdinisoft Port Devices Gigabit
-->

The WaveRT port driver combines the simplicity of the previous WaveCyclic port driver with the hardware-accelerated performance of the WavePci port driver.

Drivers Houdinisoft Port Devices

The WaveRT port driver eliminates the need to continually map and copy audio data by providing its main client (typically, the audio engine) with direct access to the data buffer. This direct access also eliminates the need for the driver to manipulate the data in the audio stream. The WaveRT port driver thus accommodates the needs of the direct memory access (DMA) controllers that some audio devices have.

To distinguish itself from other wave-render and wave-capture devices, the WaveRT port driver registers itself under KSCATEGORY_REALTIME in addition to KSCATEGORY_AUDIO, KSCATEGORY_RENDER and KSCATEGORY_CAPTURE. This self-registration occurs during the installation of the adapter driver.

In Windows Vista and later operating systems, when the operating system starts and the audio engine is initialized, the audio engine enumerates the KS filters that represent the audio devices. During the enumeration, the audio engine instantiates the drivers for the audio devices that it finds. This process results in the creation of filter objects for these devices. For WaveRT audio devices, the resulting filter object has the following components:

  • An instance of the WaveRT port driver to manage the generic system functions for the filter

  • An instance of the WaveRT miniport driver to handle all the hardware-specific functions of the filter

After the filter object is created, the audio engine and the WaveRT miniport driver are ready to open an audio stream for the type of audio processing needed. To prepare the KS filter for audio rendering (playback), for example, the audio engine and the WaveRT miniport driver do the following to open a playback stream:

  1. The audio engine opens a pin on the KS filter, and the WaveRT miniport driver creates an instance of the pin. When the audio engine opens the pin, it also passes the wave format of the stream to the driver. The driver uses the wave format information to select the proper buffer size in the next step.

  2. The audio engine sends a request to the miniport driver for a cyclic buffer of a particular size to be created. The term cyclic buffer refers to the fact that when the buffer position register reaches the end of the buffer in a playback or record operation, the position register can automatically wrap around to the beginning of the buffer. Unlike the WaveCyclic miniport driver that sets up a contiguous block of physical memory, the WaveRT miniport driver does not need a buffer that is contiguous in physical memory. The driver uses the KSPROPERTY_RTAUDIO_BUFFER property to allocate space for the buffer. If the hardware of the audio device cannot stream from a buffer of the requested size, the driver works within the resource limitations of the audio device to create a buffer that is the closest in size to the originally requested size. The driver then maps the buffer into the DMA engine of the audio device and makes the buffer accessible to the audio engine in user-mode.

  3. The audio engine schedules a thread to periodically write audio data to the cyclic buffer.

  4. If the hardware of the audio device does not provide direct support for cyclic buffers, the miniport driver periodically reprograms the audio device to keep using the same buffer. For example, if the hardware does not support buffer looping, the driver must set the DMA address back to the start of the buffer each time it reaches the end of the buffer. This update can be done in either an interrupt service routine (ISR) or a high-priority thread.

The resulting configuration supplies a glitch-resilient audio signal on audio device hardware that either supports cyclic buffers or works with the miniport driver to regularly update its hardware.

To prepare a KS filter for audio capture (recording), the audio engine and the WaveRT miniport driver use similar steps to open a record stream.

One of the performance improvements provided by the WaveRT port driver is a reduction in the delay in the end-to-end processing of the audio stream during wave-render or wave-capture. This delay is referred to as stream latency.

Devices

For more information about these two types of stream latency, see the following topics.

Drivers Houdinisoft Port Devices

For information about how to develop a WaveRT miniport driver that complements the WaveRT port driver, see the Developing a WaveRT Miniport Driver topic.

-->

This article helps to fix an issue in which Windows 10 doesn't install specific drivers for USB audio devices on the first connection.

Original product version: Windows 10, version 1703
Original KB number: 4021854 Demy driver download for windows.

Symptom

When you connect a USB audio device to a Windows 10 Version 1703-based computer the first time, the operating system detects the device but loads the standard USB audio 2.0 driver (usbaudio2.sys) instead of the specific device driver.

Cause

This issue occurs because the USB audio 2.0 driver (usbaudio2.sys) isn't classified as a generic driver in Windows 10 Version 1703. Therefore, the system assumes that a compatible, nongeneric driver is installed for the device even though the driver is generic.

This issue also causes Windows 10 Version 1703 to postpone the search for other compatible drivers through Windows Update that typically occurs immediately after you install a new device.

Resolution

To fix this issue, use one of the following methods.

Devices

Method 1

To resolve this issue, install update 4022716.

Method 2

If the device-specific driver is distributed through Windows Update, you can manually update the driver by using Device Manager. For more information about how to do this, see update drivers in Windows 10.

Method 3

If the device is not yet connected, first install the device-specific driver, such as by using the appropriate installer. After the device-specific driver is installed, Windows 10 will select that driver instead of the standard USB audio 2.0 driver when you first connect the device.

Note

See the device manufacturer's user guide for specific instructions about how to install the driver.

Method 4

If the driver isn't distributed through Windows Update, you can manually reinstall the driver. To do this, follow these steps:

Drivers Houdinisoft Port Devices Replicator

  1. Install the device-specific driver (see Method 2).
  2. Open Device Manager.
  3. Right-click (or tap and hold) the name of the device, and then select Uninstall.
  4. Restart the computer.

Drivers Houdinisoft Port Devices Gigabit

When it restarts, Windows will try to reinstall the device by using the device-specific driver.